Triple Beam Balance - Water Lab

Directions:

1. Using your TBB, find the mass of the empty beaker before you add any water.
2. Using your graduated cylinder, add the amount of water as indicated in the chart below.
3. Find the mass of the beaker with water in it.
4. Subtract the mass of the beaker and record the mass of the water only.
5. Calculate the density (nearest $100^{\text {th }}$) of water using the formula $\mathbf{D}=\mathbf{M} \div \mathbf{V}$.

Water	Grams			Density of Wass of (V) Water + Beaker
10 mL		Mass of Empty Beaker	Mass (M) of Water Only	(g/cm $\left.{ }^{3}\right)$
35 mL				
140 mL				
88 mL				
57 mL				
123 mL				
100 mL				

Avgerage

Density:

Analysis Questions: use complete sentences

\qquad

1. What did you notice about the relationship between the volume of water and the mass of water?
2. Calculate the average density (to the nearest $100^{\text {th }}$) of water using the data in the last column. Share your average with the class.
3. Looking at the class data, what do you think the density of water is?
4. If there were variations in the class data, what could have caused them?

Conclusions: 2-3 sentences on what you learned

