Triple Beam Balance - Water Lab

Directions:

- 1. Using your TBB, find the mass of the empty beaker before you add any water.
- 2. Using your graduated cylinder, add the amount of water as indicated in the chart below.
- 3. Find the mass of the beaker with water in it.
- 4. Subtract the mass of the beaker and record the mass of the water only.
- 5. Calculate the density (nearest 100^{th}) of water using the formula **D** = **M** ÷ **V**.

Water	Grams			Density of Water
(V)	Mass of Water + Beaker	Mass of Empty Beaker	Mass (M) of Water Only	$D = M \div V$ (g/cm ³)
10 mL				
35 mL				
140 mL				
88 mL				
57 mL				
123 mL				
100 mL				

Analysis Questions: use complete sentences

Avgerage Density:

- 1. What did you notice about the relationship between the volume of water and the mass of water?
- 2. Calculate the average density (to the nearest 100th) of water using the data in the last column. Share your average with the class.
- 3. Looking at the class data, what do you think the density of water is?
- 4. If there were variations in the class data, what could have caused them?

Conclusions: 2-3 sentences on what you learned